- 价格说明 : 议定
- 物流说明 : 货运及物流
- 交货说明 : 按订单
- 包装说明 : 不限
- 供货总量 : 不限
基斯特勒如何实现科技突破?
1931年,基斯特勒和他的同事查尔斯打了一次“”,看谁能用气体把果冻罐里的液体给换掉,而又不能导致凝胶的结构崩溃。这看似一个漫不经心的科技笑谈,实际上却是对他们天才思想的考验。在当时的科技条件下,他们是如何实现科技突破的呢?基斯特勒首先要做的就是弄清楚凝胶的网格与其中的水是不是一个整体,也就是说把液体拿走了凝胶的立体网格会不会被破坏?为此,基斯特勒进行了一系列的实验。
美国国家航空航天局(NASA)对气凝胶的青睐到了20世纪70年代后期,法国科学家泰希纳等人在寻求一种能储存氧气及的多孔材料的过程中,发展了气凝胶的制备技术。由于找到了一种更好的二氧化硅气凝胶合成工艺,从而使得气凝胶科学向前跨越了一大步.到了20世纪90年代,由于有机气凝胶和碳气凝胶的诞生,以及德国科学家对气凝胶在力学、热学、光学、电学、声学等方面的深入研究,为气凝胶的应用提供了技术支撑。特别是美国国家航空航天局(NASA)对气凝胶的青睐,让气凝胶的发展迎来了一个新的机遇。
新型气凝胶保温材料是目前应用十分广泛的一种材料,也称为干凝胶,密度仅为空气密度的2.75倍,是世界上密度小的固体。气凝胶依照其组成不同可以分为碳系,硅系,硫系,金属氧化物系,金属系等。可是现在开发和使用较多的应该是硅系纳米气凝胶——二氧化硅气凝胶。
任何物质的凝胶只要可以经干燥后除去内部溶剂后,又可基本保持其形状不变,且产物高孔隙率、低密度,则皆可以称之为气凝胶。气凝胶是已知密度低的人造发泡物质。他的诸多优异特性中热学方面受人们重视,也是具产业化价值的,被誉为超级隔热材料。